
C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-1

20. Debugging, Exceptions, and Error
Handling
Created: April 1, 2003
Updated: September 16, 2003

Debugging
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
This chapter discusse the debugging mechanisms available in the NCBI C++ toolkit. There are two
approaches to getting more information about an application, which does not behave correctly:

• Investigate the application's log without recompiling the program,

• Add more diagnostics and recompile the program.

Of course, there is always the third method which is to run the program under an external debugger. While
using an external debugger is a viable option, this method relies on an external program and not on a log or
diagnostics produced by the program itself which in many cases is customized to reflect the program
behavior, and can, therefore, more quickly reveal the source of errors.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Extracting Debug Data

• Command Line Parameters.

• Getting More Trace Data.

• Tracing

• Diagnostic Messages

• Tracing in the Connection Library

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-2

• NCBI C++ Toolkit Diagnostics

• Object state dump

• Exceptions

• NCBI C++ Error Handling and Diagnostics

• Debug-mode for Internal Use

• C++ Exceptions

• Standard C++ Exception Classes, and Two Useful NCBI Exception Classes
(CErrnoTemplException, CParseTemplException)

• Using STD_CATCH*(...) to catch and report exceptions

• Using THROW*_TRACE(...) to throw exceptions

• THROWS*(...) -- Exception Specification

• Standard NCBI C++ Message Posting

• Formatting and Manipulators

• ERR_POST macro

• Turn on the Tracing

• DebugDump: Take an Object State Snapshot

• Terminology

• Requirements

• Architecture

• Implementation

• CDebugDumpable

• CDebugDumpContext

• CDebugDumpFormatter

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-3

• Examples

• Exception Handling (*) in the NCBI C++ Toolkit

• NCBI C++ Exceptions

• Requirements

• Architecture

• Implementation

• CException

• Derived exceptions

• Reporting an exception

• CExceptionReporter

• Choosing and analyzing error codes

• Examples

• Throwing an exception

• Reporting an exception

• The CErrnoTemplException Class

• The CParseTemplException Class

• Macros for Standard C++ Exception Handling

• Exception Tracing

Extracting Debug Data
The C++ Toolkit has several mechanisms which can be used by a programmer to extract informa-
tion about the program usage, printing trace and diagnostic messages, and examining the object
state dump. The following sections discuss these topics in more detail:

• Command Line Parameters.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-4

• Getting More Trace Data.

• Tracing in the Connection Library

• NCBI C++ Toolkit Diagnostics

• Object state dump

• Exceptions

Command Line Parameters.
There are several command line parameters (see Table 1), which are applicable to any program
which utilizes NCBI C++ toolkit, namely CNcbiApplication class. They provide with the possibility

• to obtain a general description of the program as well as description of all available com-
mand line parameters (-h flag),

• to redirect the program's diagnostic messages into a specified file (-logfile key),

• to read the program's configuration data from a specified file (-conffile key).

Table 1. Command line parameters available for use to any program that uses CNcbiApplication

Flag Description Example

-h Print description of the application's
command line parameters.

theapp -h

-logfile Redirect program's log into the spec-
ified file

theapp -logfile theapp_log

-conffile Read the program's configuration
data from the specified file

theapp -conffile theapp_cfg

Getting More Trace Data.
All NCBI C++ toolkit libraries produce a good deal of diagnostic messages. Still, many of them
remain "invisible" - as long as the tracing is disabled. Some tracing data is only available in debug
builds - see _TRACE macro for example. Other - e.g., the one produced by ERR_POST or

LOG_POST macros - could be disabled. There are three ways to manipulate these settings, that is

enable or disable tracing, or set the severity level of messages to print:

• from the application itself,

• from the application's configuration file,

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-5

• with the help of environment variables.

The following additional topics relating to trace data are presented in the subsections that
follow:

• Tracing

• Diagnostic Messages

Tracing
There are two ways to post trace messages: using _TRACE or ERR_POST macro Trace messages

produced with the help of _TRACE macro are only available in debug mode, while those posted

by ERR_POST are available in both release and debug builds. By default, tracing is disabled. See

Table 2 for settings to enable tracing.

Table 2. Enabling Tracing

C++ toolkit API Configuration file Environment

call SetDiagTrace
(eDT_Enable);

define DIAG_TRACE entry in the
DEBUG section: [DEBUG]
DIAG_TRACE=1

define DIAG_TRACE environment
variable: set DIAG_TRACE=1

Please note, when enabling trace from a configuration file, some trace messages could be lost:
before configuration file is found and read the application may assume that the trace was dis-
abled. The only way to enable tracing from the very beginning is by setting the environment
variable.

Diagnostic Messages
Diagnostic messages produced by ERR_POST macro are available both in debug and release

builds. Such messages have a severity level, which defines whether the message will be actually
printed or not, and whether the program will be aborted or not. To change the severity level
threshold for posting diagnostic messages, see Table 3.

Table 3. Changing severity level for diagnostic messages

C++ toolkit API Configuration file Environment

call SetDiagPostLevel
(EDiagSev postSev);
Valid arguments are
eDiag_Info,
eDiag_Warning,

define DIAG_POST_LEVEL entry in
the DEBUG section: [DEBUG]
DIAG_POST_LEVEL=Info Valid
values are Info, Warning, Error,
Critical, Fatal.

define DIAG_POST_LEVEL environ-
ment variable: set
DIAG_POST_LEVEL=Info Valid
values are Info, Warning, Error,
Critical, Fatal.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-6

C++ toolkit API Configuration file Environment

eDiag_Error,
eDiag_Critical,
eDiag_Fatal.

Only those messages, which severity is equal or exceeds the threshold will be posted. By default,
messages posted with Fatal severity level also abort execution of the program. This can be
changed by SetDiagDieLevel(EDiagSev dieSev) API function.

Tracing in the Connection Library
The connection library has its own tracing options. It is possible to print the connection parame-
ters each time the link is established, and even log all data transmitted through the socket during
the life of the connection (see Table 4.

Table 4. Setting up trace options for connection library

Configuration file Environment

Connection parame-
ters:

define DEBUG_PRINTOUT entry in
the CONN section: [CONN]
DEBUG_PRINTOUT=TRUE Valid
values are TRUE, or YES, or
SOME.

define CONN_DEBUG_PRINTOUT environment
variable: set CONN_DEBUG_PRINT-
OUT=TRUE Valid values are TRUE, or YES,
or SOME.

All data: define DEBUG_PRINTOUT entry in
the CONN section: [CONN]
DEBUG_PRINTOUT=ALL Valid
values are ALL, or DATA.

define CONN_DEBUG_PRINTOUT environment
variable: set CONN_DEBUG_PRINT-
OUT=ALLValid values are ALL, or DATA.

NCBI C++ Toolkit Diagnostics
NCBI C++ toolkit provides with a sophisticated diagnostic mechanism. Diagnostic messages
could be redirected to different output channels. It is possible to set up what additional information
should be printed with a message, for example date/time stamp, file name, line number etc.
Some macros are defined only in debug mode:_TRACE, _ASSERT, _TROUBLE. Others are also

defined in release mode as well: _VERIFY, THROW*_TRACE.

Object state dump
Potentially useful technique in case of trouble is to use object state dump API. In order to use it,
the object's class must be derived from CDebugDumpable class, and implementation of the class
should supply meaningful dump data in its DebugDump function. Debug dump gives an object's
state snapshot, which can help in identifying the cause of problem at run time.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-7

Exceptions
NCBI C++ toolkit defines its own type of C++ exceptions. Unlike standard ones, this class

• makes it possible to define error codes (specific to each exception class), which could be
analyzed from a program,

• provides with more information about where a particular exception has been thrown from
(file name and line number),

• gives the possibility to create a stack of exceptions to accumulate a backlog of events
(unfinished jobs) which caused the problem,

• has elaborated, customizable reporting mechanism,

• supports using standard diagnostic mechanism with all the configuration options it pro-
vides.

NCBI C++ Error Handling and Diagnostics
The following topics are discussed in this section:

• Debug-mode for Internal Use

• C++ Exceptions

• Standard NCBI C++ Message Posting

Debug-mode for Internal Use
#include <corelib/ncbidbg.hpp> [also included in <corelib/ncbistd.hpp>]

There are four preprocessor macros (_TROUBLE, _ASSERT, _VERIFY and _TRACE) to help

the developer to catch some (logical) errors on the early stages of code development and to
hardcode some assertions on the code and data behaviour for internal use. All these macros gets
disabled in the non-debug versions lest to affect the application performance and functionality; to
turn them on, one must #define the _DEBUG preprocessor variable. Developer must be careful

and do not use any code with side effects in _ASSERT or _TRACE as this will cause a discrepancy

in functionality between debug and non-debug code. For example, _ASSERT(a++) and _TRACE

("a++ = " << a++) would increment "a" in the debug version but do nothing in the non-debug

one).

• _TROUBLE -- Has absolutely no effect if _DEBUG is not defined; otherwise, unconditionally

halt the application.

• _ASSERT(expr) -- Has absolutely no effect if _DEBUG is not defined; otherwise, evaluate

expression expr and halt the application if expr resulted in zero(or "false").

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-8

• _VERIFY(expr) -- Evaluate expression expr; if _DEBUG is defined and expr resulted in

zero(or "false") then halt the application.

• _TRACE(message) -- Has absolutely no effect if _DEBUG is not defined; otherwise, it out-

puts the message using Standard NCBI C++ message posting. NOTE: as a matter of fact,

the tracing is turned off by default, even if _DEBUG is defined, and you still have to do a

special configuration to really turn it on.

All these macros automatically report the file name and line number to the diagnostics. For
example, this code located in file "somefile.cpp" at line 333:

int x = 100;
_TRACE("x + 5 = " << (x + 5));

will output:

"somefile.cpp", line 333: Trace: x + 5 = 105

C++ Exceptions
#include <corelib/ncbiexpt.hpp> [also included in <corelib/ncbistd.hpp>]

The following additional topics are discussed in this section:

• Standard C++ Exception Classes, and Two Useful NCBI Exception Classes
(CErrnoTemplException, CParseTemplException)

• Using STD_CATCH*(...) to catch and report exceptions

• Using THROW*_TRACE(...) to throw exceptions

• THROWS*(...) -- Exception Specification

Standard C++ Exception Classes, and Two Useful NCBI Exception Classes
(CErrnoTemplException, CParseTemplException)

One must use standard C++ exceptions as much as possible. There is also a couple of auxiliary
exception classes derived from std::runtime_error:

• CErrnoException -- to report failure in a standard C library function; it automatically
appends to the user message a system-specific description reported by errno

• CParseException -- to report an erroneous position (passed in the additional constructor
parameter) along with the user message

http://www.cplusplus.com/doc/tutorial/tut5-3.html

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-9

Then, it is strictly recommended that when the basic functionality provided by standard C++
exceptions is unsufficient for some reason, one must derive the new ad hoc exception classes
from one of the standard exception classes. -- This is to provide a more uniform way of exceprion
handling, for we could smartly catch/handle most of thrown exceptions using STD_CATCH
(message) and STD_CATCH_ALL(message) preprocessor macros.

Using STD_CATCH*(...) to catch and report exceptions
You can use STD_CATCH(message) macro to catch an exception derived from the standard

exception class (std::exception) -- when all you want to do about this exception is just to print
out the "message" along with the info passed with the std::exception::what(). STD_CATCH_ALL
(message) first tries to catch a std::exception-derived exception (with STD_CATCH
(message)); and if the thrown exception is not "standard" then it posts the "message".

The "message" argument can be of any form acceptable by the diagnostic class CNcbiDiag.
This way, the easy way of dealing with exception in the NCBI C++ code will be like:

class foreign_exception { };
class exception_derived_user : public exception { };
........... char arg1 = "qqq";
int arg2 = 888;
try {
 SomeFunc(arg1, arg2);
} catch (foreign_exception& fe) {
 // do something special with the particular "non-standard"
 // (not derived from "std::exception") exception "foreign_exception"
} catch (exception_derived_user& eu) {
 // do something special with the particular "standard"
 // (derived from "std::exception") exception "exception_derived_user"
}
// handle all the rest "standard" exceptions in a uniform way
STD_CATCH ("in SomeFunc(" << arg1 << "," << arg2 << ")");

Here, if SomeFunc do throw std::runtime_error("Invalid Arg2"); then the application will print
out (to its diagnostic stream) something like:

Error: [in SomeFunc(qqq,888)] Exception: Invalid Arg2

Using THROW*_TRACE(...) to throw exceptions
If you use one of THROW*_TRACE(...) macros to throw an exception, and the source was com-

piled in a debug mode (i.e. with the preprocessor _DEBUG defined), then you can turn on the

following features that proved to be very useful for debugging:

• If the tracing is on, then the location of the throw in the source code and the thrown excep-
tion will be printed out to the current diagnostic stream, e.g.:

THROW_TRACE(CParseException, ("Failed parsing(at pos. 123)", 123));

"coretest.cpp", line 708: Trace: CParseException: {123}

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-10

Failed parsing(at pos. 123)

strtod("1e-999999", 0);
THROW1_TRACE(CErrnoException, "Failed strtod('1e-999999', 0)");

"coretest.cpp", line 718: Trace: CErrnoException:
Failed strtod('1e-999999', 0): Result too large

• Sometimes, it can be convenient to just abort the program execution at the place where
you throw an exception, e.g. in order to examine the program stack and overall state that
led to this throw. By default, this feature is not activated. You can turn it on for your whole
application by either setting the environment variable $ABORT_ON_THROW to an arbitrary

non-empty string, or by setting the application's registry entry ABORT_ON_THROW (in the
[DEBUG] section) to an arbitrary non-empty value. You also can turn it on and off in your
program code, calling function SetThrowTraceAbort().

NOTE: if the source was not compiled in the debug mode, then the THROW*_TRACE(...)
would just throw the specified exception, without doing any of the "fancy stuff" we just described.

THROWS*(...) -- Exception Specification
One is encouraged to write exception specifications for NCBI C++ functions. However, due to
some discrepancy in how different compilers handle unexpected exception events we decided to
use THROWS_NONE and THROWS() preprocessor macros for the case of "poor" compilers.

Thus, you must use:

void f1(int i) THROWS_NONE;
int f2(void) THROWS((e0));
int f3(long) THROWS((e1,e2));

in the place of:

void f1(int i) throw();
int f2(void) throw(e0);
int f3(long) throw(e1,e2);

respectively. -- Please note the double parenthesis for THROWS().

Standard NCBI C++ Message Posting
#include <corelib/ncbidiag.hpp> [also included in <corelib/ncbistd.hpp>]

Standard diagnostics is provided with the CNcbiDiag class. A given application can have as
many objects of this class as needed. An important point to remember is that each instance of the
CNcbiDiag class actually stores (and allows to append to) only one message at a time. When the

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/General.html#SetThrowTraceAbort
http://www.gamedev.net/reference/articles/article953.asp

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-11

message controlled by an instance of CNcbiDiag is complete, CNcbiDiag invokes the Post()
method of a global handler object (of type CDiagHandler) and passes the message (along with
its severity level) as the method's argument.

Usually, this global object would merely dump the message to a diagnostic stream, and there
is an auxiliary function SetDiagStream() that can be used to specify the output stream for the
diagnostics. One can call SetDiagStream(&NcbiCerr) to dump the diagnostics to the standard
error output stream:

/// Set diagnostic stream.
///
/// Error diagnostics are written to output stream "os".
/// This uses the SetDiagHandler() functionality.
NCBI_XNCBI_EXPORT
extern void SetDiagStream
(CNcbiOstream* os,
bool quick_flush = true,///< Do stream flush after every message
FDiagCleanup cleanup = 0, ///< Call "cleanup(cleanup_data)" if diag.
void* cleanup_data = 0 ///< Stream is changed (see SetDiagHandler)
);

Using SetDiagHandler(), one can install a custom handler object of type CDiagHandler to
process the messages posted via CNcbiDiag. The implementation of the CStreamDiagHandler
in "ncbidiag.cpp" is a good example of how to do this.

///
///
/// CDiagHandler --
///
/// Base diagnostic handler class.

class NCBI_XNCBI_EXPORT CDiagHandler
{
public:
 /// Destructor.
 virtual ~CDiagHandler(void) {}

 /// Post message to handler.
 virtual void Post(const SDiagMessage& mess) = 0;
};

/// Set the diagnostic handler using the specified diagnostic handler class.
NCBI_XNCBI_EXPORT
extern void SetDiagHandler(CDiagHandler* handler,
 bool can_delete = true);

/// Get the currently set diagnostic handler class.
NCBI_XNCBI_EXPORT
extern CDiagHandler* GetDiagHandler(bool take_ownership = false);

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-12

where:

///
///
/// SDiagMessage --
///
/// Diagnostic message structure.
///
/// Defines structure of the "data" message that is used with message handler
/// function("func"), and destructor("cleanup").
/// The "func(..., data)" to be called when any instance of "CNcbiDiagBuffer"
/// has a new diagnostic message completed and ready to post.
/// "cleanup(data)" will be called whenever this hook gets replaced and
/// on the program termination.
/// NOTE 1: "func()", "cleanup()" and "g_SetDiagHandler()" calls are
/// MT-protected, so that they would never be called simultaneously
/// from different threads.
/// NOTE 2: By default, the errors will be written to standard error stream.

struct SDiagMessage {
 /// Initalize SDiagMessage fields.
 SDiagMessage(EDiagSev severity, const char* buf, size_t len,
 const char* file = 0, size_t line = 0,
 TDiagPostFlags flags = eDPF_Default, const char* prefix = 0,
 int err_code = 0, int err_subcode = 0,
 const char* err_text = 0);

 mutable EDiagSev m_Severity; ///< Severity level
 const char* m_Buffer; ///< Not guaranteed to be '\0'-terminated!
 size_t m_BufferLen; ///< Length of m_Buffer
 const char* m_File; ///< File name
 size_t m_Line; ///< Line number in file
 int m_ErrCode; ///< Error code
 int m_ErrSubCode; ///< Sub Error code
 TDiagPostFlags m_Flags; ///< Bitwise OR of "EDiagPostFlag"
 const char* m_Prefix; ///< Prefix string
 const char* m_ErrText; ///< Sometimes 'error' has no numeric code,
 ///< but can be represented as text

 // Compose a message string in the standard format(see also "flags"):
 // "<file>", line <line>: <severity>: [<prefix>] <message> [EOL]
 // and put it to string "str", or write to an output stream "os".

 /// Which write flags should be output in diagnostic message.
 enum EDiagWriteFlags {
 fNone = 0x0, ///< No flags
 fNoEndl = 0x01 ///< No end of line
 };

 typedef int TDiagWriteFlags; /// Binary OR of "EDiagWriteFlags"

 /// Write to string.
 void Write(string& str, TDiagWriteFlags flags = fNone) const;

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-13

 /// Write to stream.
 CNcbiOstream& Write(CNcbiOstream& os, TDiagWriteFlags flags = fNone) const;
};

Installing a new handler typically destroys the previous handler, which can be a problem if
you need to keep the old handler around for some reason. There are two ways to address this
issue:

• Declare an object of class CDiagRestorer at the top of the block of code in which you will
be using your new handler. This will protect the old handler from destruction, and automat-
ically restore it -- along with any other diagnostic settings -- when the block exits in any
fashion. As such, you can safely use the result of calling GetDiagHandler() at the begin-
ning of the block even if you have changed the handler within the block.

• Call GetDiagHandler(true) and then destroy the old handler yourself when done with it.
This works in some circumstances in which CDiagRestorer is unsuitable, but places much
more responsibility on your code.

For compatibility with older code, the diagnostic system also supports specifying simple call-
backs:

/// Diagnostic handler function type.
typedef void (*FDiagHandler)(const SDiagMessage& mess);

/// Diagnostic cleanup function type.
typedef void (*FDiagCleanup)(void* data);

/// Set the diagnostic handler using the specified diagnostic handler class.
NCBI_XNCBI_EXPORT
extern void SetDiagHandler(CDiagHandler* handler,
 bool can_delete = true);

However, it is better to use the object-based interface for new code.
The following additional topics are discussed in this section:

• Formatting and Manipulators

• ERR_POST macro

• Turn on the Tracing

Formatting and Manipulators
To compose a diagnostic message with CNcbiDiag you can use the formatting operator "<<". It
works practically the same way as operator "<<" for standard C++ output streams. CNcbiDiag
class also has some CNcbiDiag-specific manipulators to control the message severity level:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-14

• Info -- set severity level to eDiag_Info

• Warning -- set severity level to eDiag_Warning

• Error -- set severity level to eDiag_Error [default]

• Fatal -- set severity level to eDiag_Fatal

• Trace -- set severity level to eDiag_Trace

NOTE: whenever the severity level is changed, CNcbiDiag also automatically executes the
following two manipulators:

• Endm -- means that the message is complete and to be flushed(via the global callback as
described above)

• Reset -- directs to discard the content of presently composed message

The Endm manipulator also gets executed on the CNcbiDiag object destruction.
For example, this code:

int iii = 1234;
CNcbiDiag diag1;

diag1 << "Message1_Start " << iii;
 // message 1 is started but not ready yet
{ CNcbiDiag diag2; diag2 << Info << "Message2"; }
 // message 2 flushed in destructor
diag1 << "Message1_End" << Endm;
 // message 1 finished and flushed by "Endm"
diag1 << "Message1_1"; // will be flushed by the following "Warning"
diag1 << Warning << "Discard this warning" << ++iii << Reset;
 // message discarded
diag1 << "This is a warning " << iii;
diag1 << Endm;

will write to the diagnostic stream(if the latter was set with SetDiagStream()):

Error: Message1_Start 1234
Info: Message2
Error: Message1_End
Error: Message1_1
Warning: This is a warning 1235

ERR_POST macro
There is an ERR_POST(message) macro that can be used to shorten the error posting code.

This macro is discussed in the chapter on Core Library.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-15

Turn on the Tracing
The tracing (messages with severity level eDiag_Trace) is considered to be a special, debug-

oriented feature, and therefore it is not affected by SetDiagPostLevel() and SetDiagDieLevel().
To turn the tracing on or off in your code you can use function SetDiagTrace().

By default, the tracing is off -- unless you assign environment variable $DIAG_TRACE to an

arbitrary non-empty string (or, alternatively, you can set DIAG_TRACE entry in the [DEBUG] sec-
tion of your registry to any non-empty value).

DebugDump: Take an Object State Snapshot
The following topics are discussed in this section:

• Terminology

• Requirements

• Architecture

• Implementation

• Examples

Debugging is an inevitable part of software developement. When it comes to a "mystical"
problem, one can spend days and days hunting for a glitch. So, being prepared is not just a "nice
thing to have", it is a requirement.

When a system being developed crashes consistently, debugging is easy in the sense that
the problem is reproducable. Were that all bugs like this! It is much more "fun", when the system
crashes intermittently, under circumstances about which we have only a vague idea, if any, of the
symptoms or the cause. What the developer needs in this case is information - the more the bet-
ter. One short message ("Assertion failed") is good and a coredump is better, but we typically
need a more user-friendly reporting of the program status at the point of failure.

One possible idea is to make the object tell about itself. That is, in case of trouble (but not
necessarily trouble), an object could call a function that would report as much as possible about
itself and other object it contains or to which it refers. During such operation the object should not
do anything important, something that could potentially cause other problems. The diagnostic
must of course be safe - it should only take a snapshot of an object's state and never alter that
data.

Sure, DebugDump may cause problems by itself, even if everything is "correct". Let us say
there are two objects, which "know" each other: Object A refers to Object B, while Object B
refers to Object A (very common scenario in fact). Now dumping contents of Object A will

cause dumping of Object B, which in turn will cause dumping of Object A, and so on until the

stack overflows.

Terminology
So, dumping the object contents should look as a single function call, i.e. something like this:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/General.html#SetDiagTrace

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-16

Object name;
...
name.DebugDump(?);

The packet of information produced by such operation we call bundle. The class Object is
most likely derived from other classes. The function should be called sequentially for each sub-
class, so it could print its data members. The piece of information produced by the subclass we
call frame. The object may refer to other objects. Dumping of such object produces a sub-bundle,
which consists of its own frames. To help fight cyclicity, we introduce depth of the dump. When an
object being dumped wants to dump other objects it refers to, it should reduce the depth by one.
If the depth is already zero, other objects should not be dumped.

Requirements

• The dump data should be separated from its representation. That is, the object should only
supply data, something else should format it. Examples of formatting may include generat-
ing human-readable text or file in a special format (HTML, XML), or even transmitting the
data over the network.

• Debug and release libraries should be compatible.

• It should be globally configurable as to whether the dump produces any output or not,

Architecture
Class CDebugDumpable is a special abstract base class. Its purpose is to define a virtual func-
tion DebugDump, which any derived class should implement. Another purpose is to store any
global dump options. Any real dump should be initiated through a non-virtual function of this class
- so, global option could be applied. Class CObject is derived from this class. So, any classes
based on CObject may benefit from this functionality right away. Other classes may use this
class as a base later on (e.g. using multiple inheritance).

Class CDebugDumpContext provides a generic dump interface for dumpable objects. The
class has nothing to do with data representation. Its purpose is the ability to describe the location
of where the data comes from, accept it from the object and transfer to the data formatter.

Class CDebugDumpFormatter defines the dump formatting interface. It is an abstract class.
Class CDebugDumpFormatterText is derived from CDebugDumpFormatter. Based on

incoming data, it generates a human-readable text and passes it into any output stream
(ostream).

In general, the system works like this:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-17

1. Client creates DebugDump formatter object (it could be an object of class CDebug-
DumpFormatterText or any other class derived from CDebugDumpFormatter) and
passes it to a proper, non-virtual function of the object to be dumped. Bundle name is to
be defined here - it can be anything, but a reasonable guess would be to specify the loca-
tion of the call and the name of the object being dumped.

2. CDebugDumpable analyses global settings, creates CDebugDumpContext object and
calls virtual DebugDump() function of the object.

3. DebugDump function of each subclass defines a frame name (which must be the type of
the subclass), calls DebugDump function of a base class and finally logs its own data
members. From within the DebugDump(), the object being dumped "sees" only CDe-
bugDumpContext. It does not know any specifics about target format in which dump
data will be eventually represented.

Implementation
The following topics are discussed in this section:

• CDebugDumpable

• CDebugDumpContext

• CDebugDumpFormatter

CDebugDumpable
The class is an abstract one. Global options are stored as static variable(s).

public:
 // Enable/disable debug dump
 static void EnableDebugDump(bool on);

 // Dump using text formatter
 void DebugDumpText(ostream& out,
 const string& bundle, unsigned int depth) const;
 // Dump using external dump formatter
 void DebugDumpFormat(CDebugDumpFormatter& ddf,
 const string& bundle, unsigned int depth) const;

 // Function that does the dump - to be overloaded
 virtual void DebugDump(CDebugDumpContext ddc, unsigned int depth) const = 0;

Any derived class must impelement a relevant DebugDump function.

CDebugDumpContext
The class defines a public dump interface for a client object. It receives the data from the object
and decides when and what functions of dump formatter to call.

The dump interface looks like this:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-18

public:
 CDebugDumpContext(CDebugDumpFormatter& formatter, const string& bundle);
 // This is not exactly a copy constructor -
 // this mechanism is used internally to find out
 // where are we on the Dump tree
 CDebugDumpContext(CDebugDumpContext& ddc);
 CDebugDumpContext(CDebugDumpContext& ddc, const string& bundle);

public:
 // First thing in DebugDump() function - call this function
 // providing class type as the frame name
 void SetFrame(const string& frame);
 // Log data in the form [name, data, comment]
 // All data is passed to a formatter as string, still sometimes
 // it is probably worth to emphasize that the data is REALLY a string
 void Log(const string& name, const string& value, bool is_string = true, const string&
comment = kEmptyStr);
 void Log(const string& name, bool value, const string& comment = kEmptyStr);
 void Log(const string& name, long value, const string& comment = kEmptyStr);
 void Log(const string& name, unsigned long value, const string& comment = kEmptyStr);
 void Log(const string& name, double value, const string& comment = kEmptyStr);
 void Log(const string& name, const void* value, const string& comment = kEmptyStr);
 void Log(const string& name, const CDebugDumpable* value, unsigned int depth);

A number of overloaded Log functions is provided for convenience only.

CDebugDumpFormatter
This abstract class defines dump formatting interface:

public:
 virtual bool StartBundle(unsigned int level, const string& bundle) = 0;
 virtual void EndBundle(unsigned int level, const string& bundle) = 0;

 virtual bool StartFrame(unsigned int level, const string& frame) = 0;
 virtual void EndFrame(unsigned int level, const string& frame) = 0;

 virtual void PutValue(unsigned int level, const string& name,
 const string& value, bool is_string,
 const string& comment) = 0;

Examples
Supposed that there is an object m_ccObj of class CSomeObject derived from CObject. In
order to dump it into the standard cerr stream, one should do one of the following:

m_ccObj.DebugDumpText(cerr, "m_ccObj", 0);

or

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-19

{
 CDebugDumpFormatterText ddf(cerr);
 m_ccObj.DebugDumpFormat(ddf, "m_ccObj", 0);
}

The DebugDump function should look like this:

void CSomeObject::DebugDump(CDebugDumpContext ddc, unsigned int depth) const
{
 ddc.SetFrame("CSomeObject");
 CObject::DebugDump(ddc,depth);
 ddc.Log("m_1", m_1);
 ddc.Log("m_2", m_2);
 ... etc for each data member
}

Exception Handling (%20) in the NCBI C++ Toolkit
The following topics are discussed in this section:

• NCBI C++ Exceptions

• The CErrnoTemplException Class

• The CParseTemplException Class

• Macros for Standard C++ Exception Handling

• Exception Tracing

NCBI C++ Exceptions
C++ exceptions is a standard mechanism of communicating abnormal or unexpected events to a
higher execution context. By throwing an exception a piece of code says it was unable to com-
plete the task and it is up to others to decide what to do next.

What the standard mechanism lacks is backlog, history of unfinished tasks and its conse-
quences. Say for instance, a program tries to load some data from a database. An exception
occurs, which says a connection to some port could not be created -- so what? How meaningfull
is it? What did the program try to do? Where did the request for the connection come from?

Another problem is analyzing and handling exceptions in a program. When an exception is
caught, what is known for sure is only that something bad has happened -- but what exactly? The
standard exception has only type (exception class) and a text message. The latter probably
makes sense for a human, but not for a program. The former does not seem to be clear enough.

The following topics are discussed in this section:

• Requirements

• Architecture

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbiexpt.hpp

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-20

• Implementation

• Examples

Requirements
In order for exceptions to be more useful, they should meet the following requirements:

• Exceptions should contain information about where exactly has it been thrown -- for a
human.

• Exceptions should have a numeric id -- for a program.

• It should be possible to create a stack of exceptions -- to accumulate a backlog of events
(unfinished jobs) which caused the problem. Still, for a client, it should look like a single
exception. That is, a client should be able to ignore completely the compound structure of
the exception being thrown and still get some meaningful information.

• The system should provide for the ability to analyze the exception backlog and possibly
print information about each exception separately.

• It should be possible to report the exception data into an arbitrary output channel and pos-
sibly format it differently for each channel.

Architecture
Each subsystem (library) has its own type of exceptions. It may have several types, if necessary,
but all of them should be derived from a single base class (which in turn is derived from a system-
wide base class). So, the type of an exception uniquely identifies the library which produced it.

Each exception has a numeric id, which is unique throughout the subsystem. Such an id
gives an unambiguous description of the problem occurred. Each id is associated with a text
message. Strictly speaking, there is only one message associated with a given id, so there is no
need to include the message in the exception itself -- it could be taken from an external source.
Still, we suggest using the message -- it serves as an additional comment. Also, it does not
restrict us from using an external source of messages in the future.

Each exception has information about the location where it has been thrown -- file name and
line number.

An exception can have a reference to the "lower level" one, which makes it possible to ana-
lyze the backlog. Naturally, such a backlog cannot be created automatically - it is a developer's
responsibility. The system only provides the mechanism, it does not solve problems by itself. The
developer is supposed to catch exceptions in proper places and re-throw them with the backlog
information added.

The exception constructor's mandatory parameters include location information, exception id
and a message. This constructor is to be used at the lower level, when the exception is thrown
initially. At higher levels we need a constructor, which would accept the exception from the lower
level as one of its parameters.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-21

The NCBI exception mechanism has a sophisticated reporting mechanism -- the standard
exception::what() function is definitely not enough. There are three groups of reporting mecha-
nisms:

• exception formats its data by itself and either returns the result as a string or puts it into an
output stream;

• client provides an external exception data formatter;

• NCBI standard diagnostic mechanism is used.

Implementation
The following topics are discussed in this section:

• CException

• Derived exceptions

• Reporting an exception

• CExceptionReporter

• Choosing and analyzing error codes

CException
There is a single system-wide exception base class -- CException. Each subsystem must
implement its own type of exceptions, which must be be derived from this class. The class
defines basic requirements of an exception construction, backlog and reporting mechanisms.

The CException constructor includes location information, exception id and a message.
Each exception class defines its own error codes. So, the error code "by itself" is meaningless --
one should also know the the exception class, which produced it.

/// Constructor.
///
/// When throwing an exception initially, "prev_exception" must be 0.
CException(const char* file, int line,
 const CException* prev_exception,
 EErrCode err_code,const string& message) throw();

To make it easier to throw/re-throw an exception, the following macros are defined:

NCBI_THROW(exception_class, err_code, message)
NCBI_RETHROW(prev_exception, exception_class, err_code,message)
NCBI_RETHROW_SAME(prev_exception, message)

The last one (NCBI_RETHROW_SAME) re-throws the same exception with backlog information

added.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CException&d=C

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-22

The CException class has numerous reporting methods (the contents of reports is defined
by diagnostics post flags):

 /// Standard report (includes full backlog).
 virtual const char* what(void) const throw();

 /// Report the exception.
 ///
 /// Report the exception using "reporter" exception reporter.
 /// If "reporter" is not specified (value 0), then use the default
 /// reporter as set with CExceptionReporter::SetDefault.
 void Report(const char* file, int line,
 const string& title, CExceptionReporter* reporter = 0,
 TDiagPostFlags flags = eDPF_Trace) const;

 /// Report this exception only.
 ///
 /// Report as a string this exception only. No backlog is attached.
 string ReportThis(TDiagPostFlags flags = eDPF_Trace) const;

 /// Report all exceptions.
 ///
 /// Report as a string all exceptions. Include full backlog.
 string ReportAll (TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "standard" attributes.
 ///
 /// Report "standard" attributes (file, line, type, err.code, user message)
 /// into the "out" stream (this exception only, no backlog).
 void ReportStd(ostream& out, TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "non-standard" attributes.
 ///
 /// Report "non-standard" attributes (those of derived class) into the
 /// "out" stream.
 virtual void ReportExtra(ostream& out) const;

 /// Enable background reporting.
 ///
 /// If background reporting is enabled, then calling what() or ReportAll()
 /// would also report exception to the default exception reporter.
 /// @return
 /// The previous state of the flag.
 static bool EnableBackgroundReporting(bool enable);

Also, the following macro is defined that calls the CExceptionReporter::ReportDefault()
method to produce a report for the exception:

NCBI_REPORT_EXCEPTION(title,e)

Finally, the following data access functions help to analyze exception from a program:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-23

 /// Get class name as a string.
 virtual const char* GetType(void) const;

 /// Get error code interpreted as text.
 virtual const char* GetErrCodeString(void) const;

 /// Get file name used for reporting.
 const string& GetFile(void) const;

 /// Get line number where error occurred.
 int GetLine(void) const;

 /// Get error code.
 EErrCode GetErrCode(void) const;

 /// Get message string.
 const string& GetMsg (void) const;

 /// Get "previous" exception from the backlog.
 const CException* GetPredecessor(void) const;

Derived exceptions
The only requirement for a derived exception is to define error codes as well as its textual repre-
sentation. Implementation of several other functions (e.g. constructors) are, in general case,
pretty straightforward -- so we put it into a macro definition, NCBI_EXCEPTION_DEFAULT. Please

note, this macro can only be used when the derived class has no additional data members. Here
is an example of an exception declaration:

class CSubsystemException : public CException
{
public:
 /// Error types that subsystem can generate.
 enum EErrCode {
 eType1, ///< Meaning of eType1
 eType2 ///< Meaning of eType2
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eType1: return "eType1";
 case eType2: return "eType2";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CSubsystemException, CException);
};

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-24

In case the derived exception has data members not found in the base class, it should also
implement its own ReportExtra method -- to report this non-standard data.

Reporting an exception
There are several way to report an NCBI C++ exception:

1. An exception is capable of formatting its own data, returning a string (or a pointer to a
string buffer). Each exception report occupies one line. Still, since an exception may con-
tain a backlog of previously thrown exceptions, the resulting report could contain several
lines of text - one for each exception thrown. The report normally contains information
about the location from which the exception has been thrown, the text representation of
the exception class and error code, and a description of the error. The content of the
report is defined by diagnostics post flags. The following methods generate reports of this
type:

 /// Standard report (includes full backlog).
 virtual const char* what(void) const throw();

 /// Report the exception.
 ///
 /// Report the exception using "reporter" exception reporter.
 /// If "reporter" is not specified (value 0), then use the default
 /// reporter as set with CExceptionReporter::SetDefault.
 void Report(const char* file, int line,
 const string& title, CExceptionReporter* reporter = 0,
 TDiagPostFlags flags = eDPF_Trace) const;

 /// Report this exception only.
 ///
 /// Report as a string this exception only. No backlog is attached.
 string ReportThis(TDiagPostFlags flags = eDPF_Trace) const;

 /// Report all exceptions.
 ///
 /// Report as a string all exceptions. Include full backlog.
 string ReportAll (TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "standard" attributes.
 ///
 /// Report "standard" attributes (file, line, type, err.code, user message)
 /// into the "out" stream (this exception only, no backlog).
 void ReportStd(ostream& out, TDiagPostFlags flags = eDPF_Trace) const;

Functions what() and ReportAll() may also generate a background report - the one gen-
erated by a default exception reporter. This feature can be disabled by calling the static
method

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-25

CException::EnableBackgroundReporting(false);

2. A client can provide its own exception reporter. An object of this class may either use
exception data access functions to create its own reports, or redirect reports into its own
output channel(s). While it is possible to specify the reporter in the CException::Report()
function, it is better if the same reporting functions are used for exceptions, to install the
reporter as a default one instead, using

CExceptionReporter::SetDefault(const CExceptionReporter* handler);

static function, and use the standard NCBI_REPORT_EXCEPTION macro in the program.

3. Still another way to report an exception is to use the standard diagnostic mechanism pro-
vided by NCBI C++ toolkit. In this case the code to generate the report would look like
this:

try {
 ...
} catch (CException& e) {
 ERR_POST("your message here" << e);
}

CExceptionReporter
One of possible ways to report an exception is to use an external "reporter" modeled by the CEx-
ceptionReporter abstract class. The reporter is an object that formats exception data and sends
it to its own output channel. A client can install its own, custom exception reporter. This is not
required, though. In case the default was not set, the standard NCBI diagnostic mechanism is
used.

The CExceptionReporter is an abstract class, which defines the reporter interface:

 /// Set default reporter.
 static void SetDefault(const CExceptionReporter* handler);

 /// Get default reporter.
 static const CExceptionReporter* GetDefault(void);

 /// Enable/disable using default reporter.
 ///
 /// @return
 /// Previous state of this flag.
 static bool EnableDefault(bool enable);

 /// Report exception using default reporter.
 static void ReportDefault(const char* file, int line,
 const string& title, const CException& ex,
 TDiagPostFlags flags = eDPF_Trace);

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-26

 /// Report exception with _this_ reporter
 virtual void Report(const char* file, int line,
 const string& title, const CException& ex,
 TDiagPostFlags flags = eDPF_Trace) const = 0;

Choosing and analyzing error codes
Choosing and interpreting error codes can potentially create some problems because each
exception class has its own error codes, and interpretation. Error codes are implemented as an
enum type, EErrCode, and the enumerated values are stored internally in a program as num-
bers. So, the same number can be interpreted incorrectly for a different exception class than the
one in which the enum type was defined. Say for instance, there is an exception class, which is
derived from CSubsystemException -- let us call it CBiggersystemException -- which also
defines two error codes: eBigger1 and eBigger2:

class CBiggersystemException : public CSubsystemException
{
public:
 /// Error types that subsystem can generate.
 enum EErrCode {
 eBigger1, ///< Meaning of error code, eBigger1
 eBigger2 ///< Meaning of error code, eBigger2
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eBigger1: return "eBigger1";
 case eBigger2: return "eBigger2";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CBiggersystemException, CSubsystemException);
};

Now, suppose an exception CBiggersystemException has been thrown somewhere. On a
higher level it has been caught as CSubsystemException. It is easy to see that the error code
returned by the CSubsystemException object would be completely meaningless: the error code
of CBiggersystemException cannot be interpreted in terms of CSubsystemException.

One reasonable solution seems to be isolating error codes of different exception classes -- by
assigning different numeric values to them. And this has to be done by the developer. Such isola-
tion should only be done within each branch of derivatives only. Another solution is to make sure

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-27

that the exception in question does belong to the desired class, not to any intermediate classes in
the derivation hierarchy. The template function UppermostCast() can be used to perform this
check:

/// Return valid pointer to uppermost derived class only if "from" is _really_
/// the object of the desired type.
///
/// Do not cast to intermediate types (return NULL if such cast is attempted).
template <class TTo, class TFrom>
const TTo* UppermostCast(const TFrom& from)
{
 return typeid(from) == typeid(TTo) ? dynamic_cast<const TTo*>(&from) : 0;
}

UppermostCast() utilizes the runtime information using the typeid() function, and dynamic
cast conversion to return either a pointer to "uppermost" exception object or NULL.

The following shows how UppermostCast() can be used to catch the correct error types:

try {
 ...
 NCBI_THROW(CBiggersystemException,eBigger1,"your message here");
 ...
}
catch (CSubsystemException& e) {
 // call to UppermostCast<CSubsystemException>(e) would return 0 here!
 // which means that "e" was actually the object of a different class
 const CBiggersystemException *p = UppermostCast<CBiggersystemException>(e);
 if (p) {
 switch (p->GetErrCode()) {
 case CBiggersystemException::eBigger1:
 ...
 break;
 case CBiggersystemException::eBigger2:
 ...
 break;
 default:
 ...
 break;
 }
 }
 NCBI_RETHROW_SAME(e,"your message here");
}

It is possible to use the runtime information to do it even better. Since GetErrCode function is
non-virtual, it might check the type of the object, for which it has been called, against the type of
the class to which it belong. If these two do not match, the function returns invalid error code.
Such code only means that the caller did not know the correct type of the exception, and the func-
tion is unable to interpret it.

Examples
The following topics are discussed in this section:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=UppermostCast

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-28

• Throwing an exception

• Reporting an exception

Throwing an exception
It is important to remember that the system only provides a mechanism to create a backlog of
unfinished tasks, it does not create this backlog automatically. It is up to developer to catch
exceptions and re-throw them with the backlog information added. Here is an example of throw-
ing CSubsystemException exception:

... // your code
NCBI_THROW(CSubsystemException,eType1,"your message here");
...

The code that catches, and possibly re-throws the exception might look like this:

try {
 ... // your code
} catch (CSubsystemException& e) {
 if (e.GetErrCode() == CSubsystemException::eType2) {
 ...
 } else {
 NCBI_RETHROW(e, CSubsystemException, eType1, " your message here")
 }
} catch (CException& e) {
 NCBI_RETHROW(e, CException, eUnknown, "your message here")
}

Reporting an exception
There are a number of ways to report CException, for example:

try {
 ... // your code
} catch (CSubsystemException& e) {
 NCBI_REPORT_EXCEPTION("your message here", e);
 ERR_POST(e);
 cerr << e.ReportAll();
 cerr << e.what();
 e.Report(__FILE__, __LINE__, "your message here");
}

We suggest using NCBI_REPORT_EXCEPTION(title,e) macro (which is equivalent to

calling e.Report(__FILE__,__LINE__,title)) - it redirects the output into standard diagnostic chan-
nels and is highly configurable.

The CErrnoTemplException Class
The CErrnoTemplException class is a template class used for generating error exception
classes:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-29

///
///
/// CErrnoTemplException --
///
/// Define template class for easy generation of Errno-like exception classes.

template<class TBase> class CErrnoTemplException :
 public CErrnoTemplExceptionEx<TBase, CStrErrAdapt::strerror>
{
public:
 /// Parent class type.
 typedef CErrnoTemplExceptionEx<TBase, CStrErrAdapt::strerror> CParent;

 /// Constructor.
 CErrnoTemplException<TBase>(const char* file,int line,
 const CException* prev_exception,
 typename CParent::EErrCode err_code,const string& message) throw()
 : CParent(file, line, prev_exception,
 (typename CParent::EErrCode) CException::eInvalid, message)
 NCBI_EXCEPTION_DEFAULT_IMPLEMENTATION_TEMPL(CErrnoTemplException<TBase>, CParent)
};

The template class is derived form another template class, the ErrnoTemplExceptionEx
which implements a parent class with the template parameter TBase. The parent ErrnoTem-
plExceptionEx class implements the basic exception methods such as ReportExtra(), GetEr-
rCode(), GetErrno(), GetType(). The ErrnoTemplExceptionEx class has an int data member
called m_Errno. The constructor automatically adds information about the most recent error state

as obtained via the global system variable errno to this data member.

The constructor for the derived CErrnoTemplException class is defined in terms of the
NCBI_EXCEPTION_DEFAULT_IMPLEMENTATION_TEMPL macro which defines the program

code for implementing the constructor.
The TBase template parameter is an exception base class such as CException or CCore-

Exception, or another class similar to these. The CStrErrAdapt::strerror template parameter is
a function defined in an adaptor class for getting the error description string. The CErrnoTem-
plException has only one error core - eErrno defined in the parent class, ErrnoTemplExcep-
tionEx. To analyze the actual reason of the exception one should use GetErrno() method:

int GetErrno(void) const;

The CErrnoTemplException is used to create exception classes. Here is an example of how
the CExecException class is created from CErrnoTemplException. In this example, the TBase
template parameter is the exception base class CCoreException:

///
///
/// CExecException --

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-30

///
/// Define exceptions generated by CExec.
///
/// CExecException inherits its basic functionality from
/// CErrnoTemplException<CCoreException> and defines additional error codes
/// for errors generated by CExec.

class NCBI_XNCBI_EXPORT CExecException :
 public CErrnoTemplException<CCoreException>
{
public:
 /// Error types that CExec can generate.
 enum EErrCode {
 eSystem, ///< System error
 eSpawn ///< Spawn error
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eSystem: return "eSystem";
 case eSpawn: return "eSpawn";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CExecException,
 CErrnoTemplException<CCoreException>);
};

The CParseException Class
The CParseTemplException is a template class whose parent class is the template parameter
TBase. The CParseTemplException class includes an additional int data member, called
m_Pos. This class was specifically defined to support complex parsing tasks, and its constructor

requires that positional information be supplied along with the description message. This makes it
impossible to use the standard NCBI_THROW macro to throw it, so we defined two additional

macros:

/// Throw exception with extra parameter.
///
/// Required to throw exceptions with one additional parameter
/// (e.g. positional information for CParseException).
#define NCBI_THROW2(exception_class, err_code, message, extra) \
 throw exception_class(__FILE__, __LINE__, \
 0,exception_class::err_code, (message), (extra))

/// Re-throw exception with extra parameter.

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-31

///
/// Required to re-throw exceptions with one additional parameter
/// (e.g. positional information for CParseException).
#define NCBI_RETHROW2(prev_exception,exception_class,err_code,message,extra) \
 throw exception_class(__FILE__, __LINE__, \
 &(prev_exception), exception_class::err_code, (message), (extra))

Macros for Standard C++ Exception Handling
The C++ throw() statement provides a mechanism for specifying the types of exceptions that
may be thrown by a function. Functions that do not include a throw() statement in their declara-
tion can throw any type of exception, but where the throw() statement is used, undeclared excep-
tion types that are thrown will cause std::unexpected() to be raised. Various compilers handle
these events differently, and the first two macros listed in Table 5, (THROWS(()), THROWS_NONE,

are provided to support platform-independent exception specifications.

Table 5. Platform Independent Exception Macros

Macro C++ Equivalent Synopsis

THROWS((types)) throw(types) Defines the type of exceptions
thrown by the given function.
types may be a single object
type or a comma delimited list.

THROWS_NONE throw() Specifies that the given function
throws no exceptions.

STD_CATCH(message) catch(std::exception) Provides uniform handling of all
exceptions derived from std::
exception.

STD_CATCH_ALL(message) catch(...) Applies STD_CATCH() to std::
exception derived objects;
catches non-standard excep-
tions and generates an
"Unknown exception" message.

The catch macros provide uniform, routine exception handling with minimal effort from the

programmer. We provide a convenient STD_CATCH() macro to print formatted messages to the

application's diagnostic stream. For example, if F() throws an exception of the form:

throw std::runtime_error(throw-msg)

then

try {F();}
STD_CATCH(catch-msg);

will generate a message of the form:

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-32

Error: [catch-msg] Exception: throw-msg

In this example, the generated message starts with the Error tag, as that is the severity level
for the default diagnostic stream. User-defined classes that are derived from std::exception will
be treated uniformly in the same manner. The throw clause in this case creates a new instance of
std::runtime_error whose data member desc is initialized to throw-msg. When the exception

is then caught, the exception's member function what() can be used to retrieve that message.
The STD_CATCH_ALL macro catches all exceptions. If however, the exception caught is not

derived from std::exception, then the catch clause cannot assume that what() has been defined
for this object, and a default message is generated:

Error: [catch-msg] Exception: Unknown exception

Exception Tracing
Knowing exactly where an exception first occurs can be very useful for debugging purposes.
CException class has this functionality built in, so it is highly recommended to use exceptions
derived from it. In addition to this a set of THROW*_TRACE() macros defined in the NCBI C++

Toolkit combine exception handling with trace mechanisms to provide such information.
The most commonly used of these macros, THROW1_TRACE(class_name, init_arg), instan-

tiates an exception object of type class_name using init_arg to initialize it. The definition of

this macro is:

/// Throw trace.
///
/// Combines diagnostic message trace and exception throwing. First the
/// diagnostic message is printed, and then exception is thrown.
///
/// Arguments can be any exception class with the specified initialization
/// argument. The class argument need not be derived from std::exception as
/// a new class object is constructed using the specified class name and
/// initialization argument.
///
/// Example:
/// - THROW1_TRACE(runtime_error, "Something is weird...");
define THROW1_TRACE(exception_class, exception_arg) \
 throw NCBI_NS_NCBI::DbgPrint(__FILE__, __LINE__, \
 exception_class(exception_arg), #exception_class)

From the throw() statement here, we see that the object actually being thrown by this macro
is the value returned by DbgPrint(). DbgPrint() in turn calls DoDbgPrint(). The latter is an over-
loaded function that simply creates a diagnostic stream and writes the file name, line number, and
the exception's what() message to that stream. The exception object (which is of type
class_name) is then the value returned by DbgPrint().

More generally, three sets of THROW*_TRACE macros are defined:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DbgPrint
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DbgPrint

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-33

• THROW0_TRACE(exception_object)

• THROW0p_TRACE(exception_object)

• THROW0np_TRACE(exception_object)

• THROW1_TRACE(exception_class, exception_arg)

• THROW1p_TRACE(exception_class, exception_arg)

• THROW1np_TRACE(exception_class, exception_arg)

• THROW_TRACE(exception_class, exception_args)

• THROWp_TRACE(exception_class, exception_args)

• THROWnp_TRACE(exception_class, exception_args)

The first three macros (THROW0*_TRACE) take a single argument, which may be a newly

constructed exception, as in:

THROW0_TRACE(runtime_error("message"))

or simply a printable object to be thrown, as in:

THROW0_TRACE("print this message")

The THROW0_TRACE macro accepts either an exception object or a string as the argument to

be thrown. The THROW0p_TRACE macro generalizes this functionality by accepting any printable

object, such as complex(1,3), as its single argument. Any object with a defined output operator is,
of course, printable. The third macro generalizes this one step further, and accepts aggregate
arguments such as vector<T>, where T is a printable object. Note that in cases where the object

to be thrown is not a std::exception, you will need to use STD_CATCH_ALL or a custom catch to

catch the thrown object.
The remaining six macros accept two arguments: an "exception" class name and an initializa-

tion argument, where both arguments are also passed to the trace message. The class argument
need not actually be derived from std::exception, as the pre-processor simply uses the class
name to construct a new object of that type using the initialization argument. All of the
THROW1*_TRACE macros assume that there is a single initialization argument. As in the first three

macros, THROW1_TRACE(), THROW1p_TRACE() and THROW1np_TRACE() specialize in differ-

ent types of printable objects, ranging from exceptions and numeric and character types, to
aggregate and container types.

The last three macros parallel the previous two sets of macros in their specializations, and
may be applied where the exception object's constructor takes multiple arguments. (See also the
discussion on Exception handling).

C++ Toolkit Book Debugging, Exceptions, and Error Handling

20-34

It is also possible to specify that execution should abort immediately when an exception
occurs. By default, this feature is not activated, but the SetThrowTraceAbort() function can be
used to activate it. Alternatively, you can turn it on for the entire application by setting either the
$ABORT_ON_THROW environment variable, or the application's registry ABORT_ON_THROW

entry (in the [DEBUG] section) to an arbitrary non-empty value.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetThrowTraceAbort

